Top-Rated Free Essay
Preview

atmosphere of earth

Good Essays
4096 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
atmosphere of earth
Atmosphere of Earth
From Wikipedia, the free encyclopedia
Jump to: navigation, search
"Air" redirects here. For other uses, see Air (disambiguation).

"Qualities of air" redirects here. It is not to be confused with Air quality.

Blue light is scattered more than other wavelengths by the gases in the atmosphere, giving the Earth a blue halo when seen from space onboard ISS at a height of 402–424 km.

Composition of Earth's atmosphere by volume. The lower pie represents the trace gases which together compose 0.038% of the atmosphere. The numbers are from a variety of years (mainly 1987, with CO2 and methane from 2009) and do not represent any single source.
The atmosphere of Earth is a layer of gases surrounding the planet Earth that is retained by Earth's gravity. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).
The common name given to the atmospheric gases used in breathing and photosynthesis is air. By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%. While air content and atmospheric pressure vary at different layers, air suitable for the survival of terrestrial plants and terrestrial animals currently is only known to be found in Earth's troposphere and artificial atmospheres.
The atmosphere has a mass of about 5×1018 kg, three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner and thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line, at 100 km (62 mi), or 1.57% of the Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in the atmosphere, based on characteristics such as temperature and composition.
The study of Earth's atmosphere and its processes is called atmospheric science or aerology. Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann.[1]
Contents
[hide]
1 Composition
2 Structure of the atmosphere
2.1 Principal layers
2.1.1 Exosphere
2.1.2 Thermosphere
2.1.3 Mesosphere
2.1.4 Stratosphere
2.1.5 Troposphere
2.2 Other layers
3 Physical properties
3.1 Pressure and thickness
3.2 Temperature and speed of sound
3.3 Density and mass
4 Optical properties
4.1 Scattering
4.2 Absorption
4.3 Emission
4.4 Refractive index
5 Circulation
6 Evolution of Earth's atmosphere
6.1 Earliest atmosphere
6.2 Second atmosphere
6.3 Third atmosphere
6.4 Air pollution
7 Images from space
8 See also
9 References
10 External links
Composition
Main article: Atmospheric chemistry

Mean atmospheric water vapor
Air is mainly composed of nitrogen, oxygen, and argon, which together constitute the major gases of the atmosphere. Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppmv in the coldest portions of the atmosphere to as much as 5% by volume in hot, humid air masses, and concentrations of other atmospheric gases are typically provided for dry air without any water vapor.[2] The remaining gases are often referred to as trace gases,[3] among which are the greenhouse gases such as carbon dioxide, methane, nitrous oxide, and ozone. Filtered air includes trace amounts of many other chemical compounds. Many substances of natural origin may be present in locally and seasonally variable small amounts as aerosol in an unfiltered air sample, including dust of mineral and organic composition, pollen and spores, sea spray, and volcanic ash. Various industrial pollutants also may be present as gases or aerosol, such as chlorine (elemental or in compounds), fluorine compounds and elemental mercury vapor. Sulfur compounds such as hydrogen sulfide and sulfur dioxide (SO2) may be derived from natural sources or from industrial air pollution.
Composition of dry atmosphere, by volume[4] ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Gas
Volume
Nitrogen (N2)
780,840 ppmv (78.084%)
Oxygen (O2)
209,460 ppmv (20.946%)
Argon (Ar)
9,340 ppmv (0.9340%)
Carbon dioxide (CO2)
397 ppmv (0.0397%)
Neon (Ne)
18.18 ppmv (0.001818%)
Helium (He)
5.24 ppmv (0.000524%)
Methane (CH4)
1.79 ppmv (0.000179%)
Krypton (Kr)
1.14 ppmv (0.000114%)
Hydrogen (H2)
0.55 ppmv (0.000055%)
Nitrous oxide (N2O)
0.325 ppmv (0.0000325%)
Carbon monoxide (CO)
0.1 ppmv (0.00001%)
Xenon (Xe)
0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3)
0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2)
0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2)
0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace Not included in above dry atmosphere:
Water vapor (H2O)
~0.25% by mass over full atmosphere, locally 0.001%–5% [2]
Structure of the atmosphere
Principal layers
In general, air pressure and density decrease with altitude in the atmosphere. However, temperature has a more complicated profile with altitude, and may remain relatively constant or even increase with altitude in some regions (see the temperature section, below). Because the general pattern of the temperature/altitude profile is constant and recognizable through means such as balloon soundings, the temperature behavior provides a useful metric to distinguish between atmospheric layers. In this way, Earth's atmosphere can be divided (called atmospheric stratification) into five main layers. From highest to lowest, these layers are:
Earth's atmosphere Layers of the atmosphere drawn to scale, objects within the layers are not to scale.

Exosphere
Main article: Exosphere
The exosphere is the outermost layer of Earth's atmosphere, extending beyond the exobase at an altitude of about 600 km. It is mainly composed of hydrogen, helium and some heavier molecules such as nitrogen, oxygen and carbon dioxide closer to the exobase. The atoms and molecules are so far apart that they can travel hundreds of kilometers without colliding with one another, so the atmosphere no longer behaves like a gas. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or the solar wind.
Thermosphere
Main article: Thermosphere
Temperature increases with height in the thermosphere from the mesopause up to the thermopause, then is constant with height. Unlike in the stratosphere, where a temperature inversion is caused by absorption of radiation by ozone, in the thermosphere the inversion is a result of the extremely low density of molecules. The temperature of this layer can rise to 1,500 °C (2,700 °F), though the gas molecules are so far apart that temperature in the usual sense is not well defined. The air is so rarefied that an individual molecule (of oxygen, for example) travels an average of 1 kilometer between collisions with other molecules.[5] The International Space Station orbits in this layer, between 320 and 380 km (200 and 240 mi). The aurora borealis and aurora australis are occasionally seen in the thermosphere and the lower part of the exosphere. The top of this layer is also the bottom of the exosphere, and is called the exobase. Its height varies with solar activity and ranges from about 350–800 km (220–500 mi; 1,100,000–2,600,000 ft).[citation needed]
Mesosphere
Main article: Mesosphere
The mesosphere extends from the stratopause at about 50 km (31 mi; 160,000 ft) to 80–85 km (50–53 mi; 260,000–280,000 ft). It is the layer where most meteors burn up upon entering the atmosphere. Temperature decreases with height in the mesosphere. The mesopause, the temperature minimum that marks the top of the mesosphere, is the coldest place on Earth and has an average temperature around −85 °C (−120 °F; 190 K).[6] At this altitude, temperatures may drop to −100 °C (−150 °F; 170 K).[7] Due to the cold temperature of this layer, water vapor is frozen, occasionally forming polar-mesospheric noctilucent clouds which are the highest water-based aerosols in the atmosphere. A type of lightning referred to as either sprites or ELVES, occasionally form far above tropospheric thunderclouds.
Stratosphere
Main article: Stratosphere
The stratosphere extends from the tropopause at about 12 km (7.5 mi; 39,000 ft) to about 51 km (32 mi; 170,000 ft). Temperature increases with height due to increased absorption of ultraviolet radiation by the ozone layer, which restricts turbulence and mixing. While the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the stratosphere is much warmer, and may be near freezing[citation needed]. Polar stratospheric or nacreous clouds are occasionally seen in this layer of the atmosphere. The stratopause, which is the boundary between the stratosphere and mesosphere, typically is at 50 to 55 km (31 to 34 mi; 160,000 to 180,000 ft). The pressure here is 1/1000 sea level.
Troposphere
Main article: Troposphere
The troposphere begins at the surface and extends to between 9 km (30,000 ft) at the poles and 17 km (56,000 ft) at the equator,[8] with some variation due to weather. The troposphere is mostly heated by transfer of energy from the surface, so on average the lowest part of the troposphere is warmest and temperature decreases with altitude. This promotes vertical mixing (hence the origin of its name in the Greek word τρόπος, tropos, meaning "turn"). The troposphere contains roughly 80% of the mass of the atmosphere and basically all the weather-associated cloud genus types (very tall cumulonimbus thunder clouds can penetrate the stratosphere from below).[9] The tropopause is the boundary between the troposphere and stratosphere.

Space Shuttle Endeavour appearing to straddle the stratosphere and mesosphere. The orange layer is the troposphere, which gives way to the whitish stratosphere and then the blue mesosphere.[10]
Other layers
Within the five principal layers which are largely determined by temperature, several secondary layers may be distinguished by other properties:
The ozone layer is contained within the stratosphere. In this layer ozone concentrations are about 2 to 8 parts per million, which is much higher than in the lower atmosphere but still very small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–22 mi; 49,000–110,000 ft), though the thickness varies seasonally and geographically. About 90% of the ozone in our atmosphere is contained in the stratosphere.
The ionosphere is a region of the atmosphere that is ionized by solar radiation. It is responsible for auroras. During daytime hours, it stretches from 50 to 1,000 km (31 to 620 mi; 160,000 to 3,300,000 ft) and includes the mesosphere, thermosphere, and parts of the exosphere. However, ionization in the mesosphere largely ceases during the night, so auroras are normally seen only in the themosphere and lower exosphere. The ionosphere forms the inner edge of the magnetosphere. It has practical importance because it influences, for example, radio propagation on Earth.
The homosphere and heterosphere are defined by whether the atmospheric gases are well mixed. The surfaced-based homosphere includes the troposphere, stratosphere, mesosphere, and the lowest part of the thermosphere, where the chemical composition of the atmosphere does not depend on molecular weight because the gases are mixed by turbulence.[11] This relatively homogeneous layer ends at the turbopause which is found at about 100 km (62 mi; 330,000 ft), which places it about 20 km (12 mi; 66,000 ft) above the mesopause.
Above this altitude lies the heterosphere which includes the exosphere and most of the themosphere. Here the chemical composition varies with altitude. This is because the distance that particles can move without colliding with one another is large compared with the size of motions that cause mixing. This allows the gases to stratify by molecular weight, with the heavier ones such as oxygen and nitrogen present only near the bottom of the heterosphere. The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element.
The planetary boundary layer is the part of the troposphere that is closest to Earth's surface and is directly affected by it, mainly through turbulent diffusion. During the day the planetary boundary layer usually is well-mixed, whereas at night it becomes stably stratified with weak or intermittent mixing. The depth of the planetary boundary layer ranges from as little as about 100 meters on clear, calm nights to 3000 m or more during the afternoon in dry regions.
The average temperature of the atmosphere at the surface of Earth is 14 °C (57 °F; 287 K)[12] or 15 °C (59 °F; 288 K),[13] depending on the reference.[14][15][16]
Physical properties

Comparison of the 1962 US Standard Atmosphere graph of geometric altitude against air density, pressure, the speed of sound and temperature with approximate altitudes of various objects.[17]
Pressure and thickness
Main article: Atmospheric pressure
The average atmospheric pressure at sea level is 1 standard atmosphere (atm)=101.3 kPa (kilopascals)=14.7 psi (pounds per square inch)=760 torr=29.92 inches of mercury (symbol Hg). Total atmospheric mass is 5.1480×1018 kg (1.135×1019 lb),[18] about 2.5% less than would be inferred from the average sea level pressure and the Earth's area of 51007.2 megahectares, this portion being displaced by the Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather.
If the atmosphere had a uniform density, it would terminate abruptly at an altitude of 8.50 km (27,900 ft).[clarification needed] It actually decreases exponentially with altitude, dropping by half every 5.6 km (18,000 ft) or by a factor of 1/e every 7.64 km (25,100 ft), the average scale height of the atmosphere below 70 km (43 mi; 230,000 ft). However, the atmosphere is more accurately modeled with a customized equation for each layer that takes gradients of temperature, molecular composition, solar radiation and gravity into account.
In summary, the mass of Earth's atmosphere is distributed approximately as follows:[19]
50% is below 5.6 km (18,000 ft).
90% is below 16 km (52,000 ft).
99.99997% is below 100 km (62 mi; 330,000 ft), the Kármán line. By international convention, this marks the beginning of space where human travelers are considered astronauts.
By comparison, the summit of Mt. Everest is at 8,848 m (29,029 ft); commercial airliners typically cruise between 10 km (33,000 ft) and 13 km (43,000 ft) where the thinner air improves fuel economy; weather balloons reach 30.4 km (100,000 ft) and above; and the highest X-15 flight in 1963 reached 108.0 km (354,300 ft).
Even above the Kármán line, significant atmospheric effects such as auroras still occur. Meteors begin to glow in this region though the larger ones may not burn up until they penetrate more deeply. The various layers of Earth's ionosphere, important to HF radio propagation, begin below 100 km and extend beyond 500 km. By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within the F-layer of the ionosphere where they encounter enough atmospheric drag to require reboosts every few months. Depending on solar activity, satellites can experience noticeable atmospheric drag at altitudes as high as 700–800 km.
Temperature and speed of sound
Main articles: Atmospheric temperature and Speed of sound
The division of the atmosphere into layers mostly by reference to temperature is discussed above. Temperature decreases with altitude starting at sea level, but variations in this trend begin above 11 km, where the temperature stabilizes through a large vertical distance through the rest of the troposphere. In the stratosphere, starting above about 20 km, the temperature increases with height, due to heating within the ozone layer caused by capture of significant ultraviolet radiation from the Sun by the dioxygen and ozone gas in this region. Still another region of increasing temperature with altitude occurs at very high altitudes, in the aptly-named thermosphere above 90 km.
Because in an ideal gas of constant composition the speed of sound depends only on temperature and not on the gas pressure or density, the speed of sound in the atmosphere with altitude takes on the form of the complicated temperature profile (see illustration to the right), and does not mirror altitudinal changes in density or pressure.
Density and mass

Temperature and mass density against altitude from the NRLMSISE-00 standard atmosphere model (the eight dotted lines in each "decade" are at the eight cubes 8, 27, 64, ..., 729)
Main article: Density of air
The density of air at sea level is about 1.2 kg/m3 (1.2 g/L). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law). Atmospheric density decreases as the altitude increases. This variation can be approximately modeled using the barometric formula. More sophisticated models are used to predict orbital decay of satellites.
The average mass of the atmosphere is about 5 quadrillion (5×1015) tonnes or 1/1,200,000 the mass of Earth. According to the American National Center for Atmospheric Research, "The total mean mass of the atmosphere is 5.1480×1018 kg with an annual range due to water vapor of 1.2 or 1.5×1015 kg depending on whether surface pressure or water vapor data are used; somewhat smaller than the previous estimate. The mean mass of water vapor is estimated as 1.27×1016 kg and the dry air mass as 5.1352 ±0.0003×1018 kg."
Optical properties
See also: Sunlight
Solar radiation (or sunlight) is the energy the Earth receives from the Sun. The Earth also emits radiation back into space, but at longer wavelengths that we cannot see. Part of the incoming and emitted radiation is absorbed or reflected by the atmosphere.
Scattering
Main article: Scattering
When light passes through our atmosphere, photons interact with it through scattering. If the light does not interact with the atmosphere, it is called direct radiation and is what you see if you were to look directly at the Sun. Indirect radiation is light that has been scattered in the atmosphere. For example, on an overcast day when you cannot see your shadow there is no direct radiation reaching you, it has all been scattered. As another example, due to a phenomenon called Rayleigh scattering, shorter (blue) wavelengths scatter more easily than longer (red) wavelengths. This is why the sky looks blue; you are seeing scattered blue light. This is also why sunsets are red. Because the Sun is close to the horizon, the Sun's rays pass through more atmosphere than normal to reach your eye. Much of the blue light has been scattered out, leaving the red light in a sunset.
Absorption
Main article: Absorption (electromagnetic radiation)
Different molecules absorb different wavelengths of radiation. For example, O2 and O3 absorb almost all wavelengths shorter than 300 nanometers. Water (H2O) absorbs many wavelengths above 700 nm. When a molecule absorbs a photon, it increases the energy of the molecule. We can think of this as heating the atmosphere, but the atmosphere also cools by emitting radiation, as discussed below.

Rough plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation, including visible light.
The combined absorption spectra of the gases in the atmosphere leave "windows" of low opacity, allowing the transmission of only certain bands of light. The optical window runs from around 300 nm (ultraviolet-C) up into the range humans can see, the visible spectrum (commonly called light), at roughly 400–700 nm and continues to the infrared to around 1100 nm. There are also infrared and radio windows that transmit some infrared and radio waves at longer wavelengths. For example, the radio window runs from about one centimeter to about eleven-meter waves.
Emission
Main article: Emission (electromagnetic radiation)
Emission is the opposite of absorption, it is when an object emits radiation. Objects tend to emit amounts and wavelengths of radiation depending on their "black body" emission curves, therefore hotter objects tend to emit more radiation, with shorter wavelengths. Colder objects emit less radiation, with longer wavelengths. For example, the Sun is approximately 6,000 K (5,730 °C; 10,340 °F), its radiation peaks near 500 nm, and is visible to the human eye. The Earth is approximately 290 K (17 °C; 62 °F), so its radiation peaks near 10,000 nm, and is much too long to be visible to humans.
Because of its temperature, the atmosphere emits infrared radiation. For example, on clear nights the Earth's surface cools down faster than on cloudy nights. This is because clouds (H2O) are strong absorbers and emitters of infrared radiation. This is also why it becomes colder at night at higher elevations.
The greenhouse effect is directly related to this absorption and emission effect. Some gases in the atmosphere absorb and emit infrared radiation, but do not interact with sunlight in the visible spectrum. Common examples of these are CO2 and H2O.
Refractive index
The refractive index of air is close to, but just greater than 1. Systematic variations in refractive index can lead to the bending of light rays over long optical paths. One example is that, under some circumstances, observers onboard ships can see other vessels just over the horizon because light is refracted in the same direction as the curvature of the Earth's surface.
The refractive index of air depends on temperature, giving rise to refraction effects when the temperature gradient is large. An example of such effects is the mirage.
See also: Scintillation (astronomy)
Circulation
Main article: Atmospheric circulation

An idealised view of three large circulation cells.
Atmospheric circulation is the large-scale movement of air through the troposphere, and the means (with ocean circulation) by which heat is distributed around the Earth. The large-scale structure of the atmospheric circulation varies from year to year, but the basic structure remains fairly constant as it is determined by the Earth's rotation rate and the difference in solar radiation between the equator and poles.
Evolution of Earth's atmosphere
See also: History of Earth and Paleoclimatology
Earliest atmosphere
The first atmosphere would have consisted of gases in the solar nebula, primarily hydrogen. In addition there would probably have been simple hydrides such as are now found in gas-giant planets like Jupiter and Saturn, notably water vapor, methane and ammonia. As the solar nebula dissipated these gases would have escaped, partly driven off by the solar wind.[20]
Second atmosphere
The next atmosphere, consisting largely of nitrogen plus carbon dioxide and inert gases, was produced by outgassing from volcanism, supplemented by gases produced during the late heavy bombardment of Earth by huge asteroids.[20] A major part of carbon dioxide emissions were soon dissolved in water and built up carbonate sediments.
Water-related sediments have been found dating from as early as 3.8 billion years ago.[21] About 3.4 billion years ago, nitrogen was the major part of the then stable "second atmosphere". An influence of life has to be taken into account rather soon in the history of the atmosphere, since hints of early life forms are to be found as early as 3.5 billion years ago.[22] The fact that this is not perfectly in line with the 30% lower solar radiance (compared to today) of the early Sun has been described as the "faint young Sun paradox".
The geological record however shows a continually relatively warm surface during the complete early temperature record of the Earth with the exception of one cold glacial phase about 2.4 billion years ago. In the late Archaean eon an oxygen-containing atmosphere began to develop, apparently from photosynthesizing cyanobacteria (see Great Oxygenation Event) which have been found as stromatolite fossils from 2.7 billion years ago. The early basic carbon isotopy (isotope ratio proportions) is very much in line with what is found today,[23] suggesting that the fundamental features of the carbon cycle were established as early as 4 billion years ago.
Third atmosphere

Oxygen content of the atmosphere over the last billion years. This diagram in more detail
The constant re-arrangement of continents by plate tectonics influences the long-term evolution of the atmosphere by transferring carbon dioxide to and from large continental carbonate stores.[24] Free oxygen did not exist in the atmosphere until about 2.4 billion years ago during the Great Oxygenation Event and its appearance is indicated by the end of the banded iron formations. Before this time, any oxygen produced by photosynthesis was consumed by oxidation of reduced materials, notably iron. Molecules of free oxygen did not start to accumulate in the atmosphere until the rate of production of oxygen began to exceed the availability of reducing materials. This point signifies a shift from a reducing atmosphere to an oxidizing atmosphere. O2 showed major variations until reaching a steady state of more than 15% by the end of the Precambrian.[25] The following time span was the Phanerozoic eon, during which oxygen-breathing metazoan life forms began to appear.
The amount of oxygen in the atmosphere has fluctuated over the last 600 million years, reaching a peak of about 30% around 280 million years ago, significantly higher than today's 21%. Two main processes govern changes in the atmosphere: Plants use carbon dioxide from the atmosphere, releasing oxygen. Breakdown of pyrite and volcanic eruptions release sulfur into the atmosphere, which oxidizes and hence reduces the amount of oxygen in the atmosphere. However, volcanic eruptions also release carbon dioxide, which plants can convert to oxygen. The exact cause of the variation of the amount of oxygen in the atmosphere is not known. Periods with much oxygen in the atmosphere are associated with rapid development of animals. Today's atmosphere contains 21% oxygen, which is high enough for this rapid development of animals.[26]

This animation shows the buildup of tropospheric CO2 in the Northern Hemisphere with a maximum around May. The maximum in the vegetation cycle follows, occurring in the late summer. Following the peak in vegetation, the drawdown of atmospheric CO2 due to photosynthesis is apparent, particularly over the boreal forests.
Currently, anthropogenic greenhouse gases are accumulating in the atmosphere, which is the main cause of global warming.[27]
Air pollution
Main article: Air pollution
Air pollution is the introduction into the atmosphere of chemicals, particulate matter, or biological materials that cause harm or discomfort to organisms.[28] Stratospheric ozone depletion is believed to be caused by air pollution (chiefly from chlorofluorocarbons).

You May Also Find These Documents Helpful

  • Good Essays

    Pt1420 Unit 9

    • 615 Words
    • 3 Pages

    1. The composition of dry air at sea level is nearly the same everywhere on Earth’s surface and up to an altitude of about 80 km.…

    • 615 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Atmosphere – this is the combination of gases that overlap the globe. It has layers that surround the earth and are responsible for both air and weather.…

    • 1455 Words
    • 6 Pages
    Better Essays
  • Good Essays

    The air we breathe is a mixture of gasses, predominantly Nitrogen (78%) and Oxygen (20.9%). Although the percentages stay the same at high altitudes, lower atmospheric pressure creates "thin-air."…

    • 811 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    5. Dry air is about 78 percent nitrogen; therefore, the partial pressure of nitrogen at sea level is about _______ mm Hg.…

    • 12076 Words
    • 63 Pages
    Satisfactory Essays
  • Good Essays

    *Nitrogen, which accounts for 78 percent of the atmosphere, exists in the atmosphere in a form unusable by living organisms.…

    • 744 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    The principal gaseous components of the earth’s atmosphere are nitrogen and oxygen with small amounts of carbon dioxide and water vapors. Scientists believe that these gases came from volcanic eruptions from the Earth dating back from the beginning of time to now.…

    • 346 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    The ozone layer is one of the most debated scientific subjects of the last decade. The growing problem of its depletion is being researched heavily all over the world, and methods are being researched to try and solve the problem. There have also been many debates concerning the relationship between the ozone layer and the onset of global warming. Before solutions can be developed, however, what the ozone layer actually does and what is causing it to be depleted must be understood.…

    • 1211 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Atmospheric (external) air contains a high percentage of oxygen and nitrogen whereas alveoli gas contains a lower percentage of oxygen and a higher percentage of carbon dioxide. The differences in composition are due to the fact that gaseous exchange is taking place within the alveoli in the lungs. Oxygen is diffusing from the alveoli into the pulmonary artery and carbon dioxide is diffusing back into the alveoli from the pulmonary artery due to the concentration gradients. This is the main reason why external air and alveolar gas have such different compositions.…

    • 680 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Air Pressure

    • 451 Words
    • 2 Pages

    Air is composed of molecules. Air is matter. It has mass and takes up space. Air is composed of different gases such as nitrogen, oxygen, carbon dioxide, water vapor, and other gases. Air molecules are in constant motion. As they move, they come in contact with surfaces. Air molecules push and press on the surfaces they contact. The amount of force per unit area that air molecules exert on a surface is called air pressure. (What is Air Pressure 6) Air pressure is caused by all of the air molecules in the Earth's atmosphere pressing down on the Earth's surfaces. We can measure air pressure to help us predict weather conditions around the world. Temperature also affects air pressure because air contracts when it cools and expands when it is heated. So if air above a region of Earth cools, it does not extend to as high an altitude as the surrounding air. In this case, its pressure at higher temperature is lower than in the surroundings even when the pressure at the surface is the same as in surrounding areas. Then air flows into the cooler region at high altitude, making the total weight of air above the region greater than in the surroundings. This is a "high". The cool air descends to the earth's surface. Near the surface, the falling air spreads out,…

    • 451 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    Mechanics of Respiration

    • 2141 Words
    • 9 Pages

    THE VOLUME OF A GAS IS PROPORTIONAL TO THE TEMPERATURE V = kT, P is constant IDEAL GAS EQUATION V = kn, T and P are constant EQUAL VOLUMES OF GASES, CONTAIN EQUAL NUMBER OF MOLECULES. PV= nRT P, PRESSURE V, VOLUME OF GAS n, NUMBER OF MOLECULES OF GAS R, GAS CONSTANT T, TEMPERATURE P1V1 = P2V2 n1T1 n2T2 What is atmospheric air? Nitrogen, PN2 Oxygen, PO2 Carbon Dioxide, PCO2 Total Partial Pressure of gases o Pressure exerted by any one gas in a mixture of gases o Equal to the total pressure times the fraction of the total amount of gas it represents DALTON’S LAW PARTIAL PRESSURE, PX THE PRESSURE EXERTED BY A GAS IN A GAS MIXTURE IS PROPORTIONATE TO ITS FRACTIONAL CONCENTRATION IN THE MIXTURE. Px = Fx x P Total Px = Fx x P Total Percentage 79 20.8 .04 100…

    • 2141 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    Assignment 1 SCIN137

    • 530 Words
    • 2 Pages

    The principal gases in the Earth’s atmosphere are nitrogen and oxygen. There are also small amounts of water vapor and carbon dioxide. Scientists believe that these gases came from molten rock within the hot interior that escaped through volcanoes and steam vents. This is how they believe the 2nd Earth atmosphere was developed.…

    • 530 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Layers of the Atmosphere

    • 665 Words
    • 3 Pages

    The Stratosphere extends from the top of the troposphere up to around 31 miles (50 km) above the Earth's surface. This layer holds 19 percent of the atmosphere's gases but very little water vapor.…

    • 665 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    As of now Earth is the only planet that has an atmosphere where lives can strive. What I mean by that is, Oxygen being the gas that is required for the life of most creatures. This is present in Earth's atmosphere and also in water. Oxygen is constantly put into the atmosphere by plants and trees. Earth's atmosphere also contains a small amount of carbon dioxide. This is a poisonous gas which makes up most of the atmosphere of planets like Venus and Mars and makes them incapable to support human life. However, its smaller presence on Earth is useful as it helps to moderate the planet's temperature and is absorbed by plants during photosynthesis to produce oxygen. Earth's atmosphere is kept on the planet by its pull of gravity. Mars and Mercury are too small to keep atmosphere. As a result, Mercury has no atmosphere, and Mars' atmosphere is very thin, containing gases which have not managed to escape into space yet. Earth's atmosphere is thick enough to prevent poisonous rays of radiation from getting through it.…

    • 1436 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    Although the amount of CO2 is small, it is a very important atmospheric gas because it absorbs much of the incoming shortwave radiation from the Sun and outgoing long wave radiation from the Earth. The greenhouse effect is caused when long wave radiation is absorbed by CO2 molecules in the lower atmosphere, which reradiate some of that heat…

    • 451 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Realms of the Earth

    • 2945 Words
    • 12 Pages

    The atmosphere is the envelope of gases surrounding Earth that extends up to approximately 10,000 km above Earth's surface (the extreme edges of the atmosphere lie about 35,000 km above the surface). Atmospheric density decreases going further away from Earth's surface. Because of this, most (99%) of the atmosphere's mass lies within 30 km of Earth's…

    • 2945 Words
    • 12 Pages
    Better Essays

Related Topics