Preview

Bending Moment Lab Report

Good Essays
Open Document
Open Document
1485 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Bending Moment Lab Report
Applied mechanics laboratory report
“Measurement of bending moment and shear forces for structural analysis”

Azamat Omarov
ID201102658

1.Theory and background
1.1 Summary
That performed laboratory session on bending moments and shear forces requires good understanding and sufficient knowledge of axial forces. Bending is defined as a behavior of any structural element that undergoes the external load, which is applied perpendicularly to longitudinal axis. That experiment helps us to find the maximum load that can be applied to the beam with rectangular cross section. Moments are calculated by using statics theory, or multiplying perpendicularly directed load by the respective distance to the pivot point.
1.2 Objective
The main objective of that laboratory is to provide students with basic experience and thus, the comparison between calculated and measured values (software) should be demonstrated to show the ability to apply statics theory from applied mechanics module.
1.3 Theory
Shear forces
The shearing force at any section of a beam is the algebraic sum of the lateral components of the forces acting on either side of the section. F is the resultant reaction on the left of AA. As the beam is in equilibrium then resultant reaction on the right of AA must be downwards.
Figure1. Shear forces diagram Equilibrium state ∑Fx=0N; ∑Fy=0N; ∑Mo=0N.m (1) In our case we use AA as a reference point to calculate the bending moment

Bending Moment
Bending Moment at AA is defined as the algebraic sum of the moments about the section of all forces acting on either side of the section. Bending moment is considered to be positive when the total moment on the right of AA is clockwise, whereas moment to the right of AA is anticlockwise. That type of behavior of bending moment is called sagging since it makes the beam to become concave upward. The opposite of sagging is called hogging.

Figure 2. Bending moment (sagging) diagram

2.

You May Also Find These Documents Helpful

  • Powerful Essays

    EGR 315 Final Paper

    • 2079 Words
    • 9 Pages

    This stress from equation 3 is known as the transverse shear stress, and is always accompanied with bending stress. Defining the variables in this equation, b is the width of section at y=y1, and I is the second moment of area of the entire section about the neutral axis.…

    • 2079 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    A 5.0 kg and 2.0 m beam is hinged to a wall and supported by a thin cable attached to a building. The beam is supported at an angle of 400 as showed in the figure and used to support a 10 kg sign.…

    • 1013 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Asymmetrical bending is bending couples acting in a plane of symmetric. If loads do not act in plane of symmetry, this leads to deflection in a plane perpendicular to the loading plane as well as in the loading plane. This coupling does not occur if the loading is in principal plane.…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Powerful Essays

    A tensile test was performed on a 4140 steel sample and the axial and transverse strains were measured. Data points were collected at incremental loads and graphed to determine the elastic modulus (30.4 x 106). Poisson’s ratio was also calculated from the dataset and determined to be 0.29. These experimental values agree closely (within 2%) to the textbook values of the steel sample. A sample of 7075 Aluminum was used in a cantilever beam test. Intermediate and end loads were place on the sample and the strain was measured at various distances from the loads. Using the dataset from the individual loads, the superposition strain was calculated and agreed within 7% of the experimental strain with both loads. From the measured deflection of the cantilever beam and the dataset, Young’s Modulus for the aluminum sample was determined to be 9.1x106 psi which agrees within 8% of the textbook value.…

    • 4723 Words
    • 19 Pages
    Powerful Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Powerful Essays

    Bending of Beam Lab Report

    • 1004 Words
    • 5 Pages

    For a beam of rectangular cross section, say of width w and thickness t, the same mid spam deflection of the centrally loaded beam when the flat side is supported, then be compared to that when the thin side is supported. The moment of inertia for the respective situations are given by:…

    • 1004 Words
    • 5 Pages
    Powerful Essays
  • Better Essays

    Dedlection

    • 2185 Words
    • 9 Pages

    In this experiment, we were needed to find the deflection of Ring, Semicircle and quadrant made from the curved beam. The experiment is carry out by applied these beam with a load that weight 5N for circle and 2N for Semicircle and Quadrat. For the ring shape, the load is added 5N contiuosly until the load 40N and the dial reading is note down every time the load is added. Similar step is repeated using Semicircle and Quadrant that is we add 2N load continuously until 14N and take the dial reading.…

    • 2185 Words
    • 9 Pages
    Better Essays
  • Good Essays

    The experiment hardware is a T-beam that fits onto a Structures Test Frame (STR1, available separately). Students adjust a load cell that bends the beam and, when connected to the optional Digital Force Display (STR1a, available separately), it measures the bending force (load). Strain gauges and a digital strain bridge measure the strains in the beam. Dummy strain gauges compensate for temperature variation and balance the strain bridges. The equipment includes a lead for connection to the Digital Force Display (STR1a, available separately). The lecturer guide provides details of the equipment including sample experiment results. The student guide describes how to use the equipment and gives experiment procedures. For extra…

    • 595 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Stress Analysis Report

    • 4347 Words
    • 18 Pages

    The aim of this experiment was to study the behaviour of a beam subjected to increasing bending moments and to discover the stress distribution in the beam for both the direct and shear stresses. This was done by applying a known load to the beam and recording the deflection of the loading points. These readings were then analysed to give the axial direct strains and stresses as well as the shear strains as stresses at the sites of the strain gauges. As a result, the stress distribution of the beam can be calculated.…

    • 4347 Words
    • 18 Pages
    Powerful Essays
  • Good Essays

    Deflection

    • 516 Words
    • 3 Pages

    • • • • Double Integration Method Moment-Area Method Elastic Load Method Conjugate Beam Method…

    • 516 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Unknown

    • 1652 Words
    • 7 Pages

    The principle is that of moment, or turning force/torque), calculated by force x distance. Fundamentally, in the case of a balance beam, the force is gravity acting on each side of the fulcrum of the balance, and distance is the distance from that fulcrum.…

    • 1652 Words
    • 7 Pages
    Powerful Essays
  • Good Essays

    Beam Deflection

    • 2631 Words
    • 12 Pages

    The primary goal of the experiment was to determine the structural stiffness of two cantilevered beams composed of steel and aluminum while maintaining both beams at a constant thickness and cross sectional area. The experiment also investigated material properties and dimensions and their relationship to structural stiffness. The experiment was divided into two separate parts. The results for the first part of the experiment were obtained by clamping the beam at one end while applying different masses at a specified length across the beam and then measuring deflection. The measuring device was set a specified distance from the clamped end. The following procedure was employed for both the steel and aluminum beam. The second part of the experiment required placing a single known mass at various lengths across the supported beam and then measuring the resulting deflection. This method was only completed for the steel beam. The deflections from both parts of the experiment were then averaged independently to ascertain final conclusions. The first part of the experiment resulted in a much greater deflection for the aluminum beam, with its greatest deflection spanning to an average of 2.8 mm. Moreover, the deflection for the steel beam was much less, concluding that steel has a larger structural stiffness. In fact, the structural stiffness that was found for steel was 3992 N/m, compared to aluminum, which was 1645 N/m. In addition, the theoretical values of structural stiffness for steel and aluminum were calculated to be 1767.9 N/m and 5160.7 N/m, respectively. There was a large error between the theoretical and experimental values for steel, close to 29%. This could have been due to human error, or a defective beam. The second part of the experiment resulted in validating the fact that the values of deflection are proportional to length cubed. It was also determined that deflection is inversely proportional to the elastic modulus and that structural…

    • 2631 Words
    • 12 Pages
    Good Essays
  • Better Essays

    Three Point Bending Test

    • 1034 Words
    • 5 Pages

    To calculate the modulus of elasticity in bending Ef, flexural stress σf, flexural strain εf and the flexural stress-strain response of the material by performing three point bending flexural test…

    • 1034 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    Finite Element Analysis

    • 262 Words
    • 2 Pages

    • Build a truss model and analyze it. • Determine the maximum displacement and stresses. Visualize the load path in the truss by plotting the rod element axial stresses. • Follow the load from the load application point to the fixed base. ������…

    • 262 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    Bending Moment Exp

    • 1686 Words
    • 7 Pages

    A bending moment may be defined as “the sum of turning forces about that section of all external forces acting to one side of that section”. The forces on either side of…

    • 1686 Words
    • 7 Pages
    Powerful Essays

Related Topics