Preview

Synthesis and Chemistry of K2S2O8

Better Essays
Open Document
Open Document
2136 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Synthesis and Chemistry of K2S2O8
SYNTHESIS AND CHEMISTRY OF K2S2O8

ABSTRACT

In this experiment, a sample of K2S2O8 was prepared by the electrolysis of an aqueous solution of H2SO4 and K2SO4. The peroxodisulfate anion, S2O82-, was also observed for its ability to serve as a counterion for precipitation by preparing a copper (II) complex by reacting hydrated copper (II) sulfate with ammonium peroxodisulfate in the presence of pyridine. This same ability, coupled with its strong oxidizing ability allowed for stabilization of the unusual oxidation state of 2+ for silver which was observed by preparing an analogous silver (II) complex by reacting silver (I) nitrate with ammonium peroxodisulfate in the presence of pyridine. IR spectra for the three products were obtained, as well as qualitative tests for Product A (K2S2O8) in comparison with H2O2, confirm the presence of the peroxodisulfate anion and the identity of the individual yields.

INTRODUCTION

Electrolysis is a widely used technique in the large-scale preparation of several industrially important inorganic chemicals, one of which is potassium peroxodisufate. The S2O82- ion is one of the strongest known oxidizing agents, even stronger than H2O2, and will oxidize many elements to their highest oxidation states.

The amount of product generated depended on the total number of electrons passed through the solution. Because of the product of the current I (in amps) and the time of electrolysis t (in seconds) gives coulombs (C) of electricity and 96,500 C oxidized (or reduced) one equivalent of reactant, the theoretical yield of product will be:

Theoretical yield = (coulombs passed)/(96,485 coulombs/mol) (molar mass/e- transferred per ion)
= (I t/ 96,485) (molar mass/e- transferred per ion)

This equation is a summary of Faraday’s 1st Law of Electrolysis wherein the mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred at that electrode. Quantity



References: 1. Girolmi, G.S.; Rauchfuss, T.B.; Angelici, R.J. Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual. University Science Books, 1999. 2. Miller, F.; Wilkins, C. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Ph.D. Dissertation, Mellon Institute, Pittsburgh, PA, 1952. 3. Szafran, Z.; Pike, R. M.; Singh, M. M. Microscale Inorganic Chemistry - A Comprehensive Laboratory Experience. Wiley, 1991. 4. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts A and B. Wiley, 1997. 5. University of Calgary, Department of Chemistry, Chemistry 331, Inorganic Chemistry: Main Group Elements, Online Lab Manual, Fall 2013, Project #2 pp 33-36.

You May Also Find These Documents Helpful